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Magnetostatic modulation of nonlinear refractive index and
absorption in quantum wires
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The magnetic-field dependence of the nonlinear differential refractive index1n and absorp-
tion1α in quantum wires—measured by non-degenerate pump and probe spectroscopy—is
investigated theoretically. The nonlinearities arise from population saturation of the exci-
tonic state under optical pumping and the formation of biexcitons (excitonic molecules).
Both1n and1α exhibit positive and negative peaks at certain pump and probe detuning fre-
quencies associated with the formation of biexcitons and bleaching of excitons, respectively.
The amplitude, lineshape and the frequency at which these peaks occur can be modulated by
a magnetic field which opens up the possibility of realizing novel magneto-optical devices.
Additionally, the magnetic field may allow us to realize a relatively large variation in the
differential refractive index over a range of frequencies without significant accompanying
absorption, thereby allowing the observation of optical bistability.
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1. Introduction

It is well known that quantum-confined structures exhibit pronounced optical nonlinearities of excitonic
origin [1]. The enhanced nonlinearities arise from one-dimensional quantum confinement which increases the
binding energy of all excitonic complexes and the oscillator strengths for excitonic transitions. In this paper,
we report how a magnetic field influences the nonlinear differential refractive index1n and absorption1α in
a quantum wire. This study is motivated by the realization that any significant modulation of these quantities
by a magnetic field can lead to novel device applications, as well as provide a tool for probing the origin of
optical nonlinearity in a quantum structure.

The physical processes associated with nonlinear refraction and absorption in quantum confined systems
is a well-researched topic. In reference [2, 3], the authors reported room-temperature measurements of1n in
GaAs multiquantum well structures and found it to be 0.01 at low levels of excitation and 0.05 at high levels.
They attributed the nonlinearity to band filling. In quantum wires (as opposed to wells), we can expect1n
and1α to be much larger because of the additional degree of confinement and the much higher density of
states at the subband edges. Indeed, our theoretical calculations indicate that1n can be an order of magnitude
larger in quantum wires than that found in quantum wells.
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Fig. 1.The imaginary part of the third-order nonlinear susceptibilityχ(3) as a function of pump and probe detuning energy and magnetic-
flux density. The pump is tuned slightly below the exciton resonance at each value of the magnetic field and the longitudinal broadening
parameter is assumed to be one-tenth that of the transverse broadening parameter. The wire dimension isLz = 200 Å andL y = 500 Å.
The inset shows the wire geometry and orientation of the magnetic field.

2. Theory

We wish to calculate the differential refractive index and absorption associated with the third-order nonlinear
susceptibilityχ(3) in quantum wires. For this, we consider a rectangular quantum wire of the geometry shown
in the inset of Fig. 1. An external magnetic field is applied perpendicular to the wire axis. We assume near-
resonant pumping of the excitonic state in a non-degenerate pump and probe spectroscopy experiment and
calculate the changes in refractive index1nand absorption1α relevant to this situation. The actual measurable
quantities in such an experiment are usually the transmission in the absence(T0) and in the presence(T) of
the pump. The differential transmission spectra can be found from these quantities asD = (T − T0)/T0. For
small values of the differential transmission (well below unity),D is proportional to the differential absorption
1α. In fact, D ≈ −1αd, whered is the wire thickness along the direction of the optical beam.

The nonlinear differential refractive index and absorption can be evaluated theoretically as in [4]. These
quantities are given by

1n = 2π√
εr

Reχ(3), (1)

and

1α = 4πω

c
√
ε

Imχ(3), (2)



Superlattices and Microstructures, Vol. 23, No. 6, 1998 1199

Table 1: Values of the various parame-
ters for GaAs used to calculate the non-
linear susceptibilityχ(3).

Eg0 = 1.519 eV
h̄0 = 3 meV
Ep = 23 eV
N0 = 7.89× 1014 cm−2

wherec is the speed of light,εr is a relative dielectric constant of the material,ω is a near-resonant frequency of
the pump beam, and Imχ(3), Reχ(3) are the imaginary and real parts of the nonlinear third-order susceptibility
χ(3) which need to be calculated.

The general derivation ofχ(3) for low density of excitonic complexes can be found in [5]. This derivation
is based on summation over 16 double Feynman diagrams. In the frequency range of interest, the lowest-lying
states are the major contributors toχ(3) and this allows us to reduce the expression forχ(3) to a simplified
form given by

χ(3) = −2

π
√

2π

τ

η2

N0e4

m2
0ω

4
g0

E2
p

[
1

(ω1− ωg0 + i0g0)
− 1

(ω1− ωg0 + ωb + i0bg)

]

×
2∑

r=1

{
1

h̄3(ωr − ω2+ i γ )

[
1

(ωg0 − ω2+ i0g0)
+ 1

(ωr − ωg0 + i0g0)

]}
+ 1

(ω1+ ω2− 2ωg0 + ωb + i0b0)

[
1

(ω1− ωg0 + i0g0)
+ 1

(ω2− ωg0 + i0g0)

]
, (3)

whereω2 andω1 are the pump and probe frequencies,h̄ωg0 is the exciton ground-state energy,h̄ωb is the
biexciton binding energy,m0 is the rest mass of a free electron, andN0 is the average areal density of unit cells.
The quantities0i j andγ are the transverse and longitudinal broadening parameters (or damping constants),
andEp is the Kane matrix element. The indexi or j indicates system ground state(0), exciton ground state
(g), and biexciton ground state(b). Numerical values of the various quantities used in our calculations are
given in Table 1. Parametersη andτ physically correspond to the exciton and biexciton correlation lengths
(electron–hole and hole–hole mean separations in the two cases) and have to be determined variationally for
each magnetic field strength and for each set of wire dimensions following the prescription given in [6, 7].

The exciton ground-state energyh̄ωg0 is defined as follows

EX
g = h̄ωg0 = EG + Ee1 + Ehh1 − EX

B , (4)

whereEG is the bulk band gap of the material,Ee1, Ehh1 are the lowest electron and the highest heavy-hole
magnetoelectric subband bottom energies in a quantum wire (measured from the bottom of the bulk conduction
band and the top of the bulk valence band) respectively, andEX

B is the ground-state exciton binding energy
which is also determined variationally [6, 7].

It should be noted from eqn (3) thatχ(3) is a strong function of the transverse and longitudinal broadening
parameters0i j andγ . Physically,γ is related to the population decay rate of the excitonic states. The smaller
the value ofγ , the larger the lifetime of excitons and the higher the probability of forming a biexciton in a two-
step photon absorption. The transverse broadening parameters0i j represent, fori 6= j , the phenomenological
coherence decay rate of thei − j transition, while fori = j , they describe the population decay of the statei .
The population decay rate, in its turn, is determined by the dominant scattering mechanism in the sample.
In most cases, the values of0i j andγ are difficult to obtain experimentally and fairly difficult to estimate
theoretically. Moreover, these parameters could be strong functions of the confinement, population density
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of excitons, magnetic field and temperature. In view of the little experimental data available, and in order to
simplify the calculations, we assume that0i j = 0 for all i, j .

Since in this work we are interested in the modulation of the differential refractive index and absorption
of quantum wires with a magnetic field, the influence of the field on all parameters in eqn (3) is especially
important. The value of0 in quantum wires is primarily determined by carrier–phonon interactions [8].
As shown in [8], the scattering rates associated with these interactions can be affected by a magnetic field
at any given kinetic energy of an electron or hole. However, when the rates are averaged over energy, the
magnetic-field dependence turns out to be quite weak. As a first approximation, we can therefore consider the
rates to be independent of the magnetic field. We also neglect thermal broadening of the damping parameters
since it is less important in quantum-confined systems than in bulk [9]. An important property of eqn (3)
is the following: if all the transverse relaxation parameters are assumed to be equal (as in our case) and the
biexciton binding energy(h̄ωb) approaches zero, thenχ(3) vanishes. This is a manifestation of the well-
known fact that noninteracting ideal independent bosons do not show any nonlinearity [9]. Consequently,
exciton–exciton interaction, leading to biexciton formation, is necessary for the existence of this type of the
nonlinearity.

A calculation of the excitonic contribution toχ(3) requires that the exciton and biexciton binding energies
be obtained first. Additionally, all the parametersη andτ need to be found. For details of computing these
energies and these parameters in the case of a quantum wire subjected to a magnetic field, we refer the
reader to our past work [6, 7]. Once these quantities are evaluated, we can calculateχ(3) from eqn (3) as a
function of a magnetic field, wire width and pump and probe detuning frequencies. The differential refractive
index and absorption are then computed from the real and imaginary parts ofχ(3) as given by eqns (1)
and (2).

3. Results and discussion

All results in this paper are pertinent to GaAs quantum wires. In Fig. 1, we present a three-dimensional
plot of Imχ(3) for a two-beam experiment in which the frequency of one beam, the pump, is fixed and that
of the other, the probe, is allowed to vary over a frequency range ofh̄1ω = 40 meV centered around the
pump frequency. The pump frequency is chosen to be slightly detuned from the exciton resonance by a

frequency−
√

2
2 0/h̄. The quantum-wire dimensions which have been used to plot this figure areL y = 500 Å,

Lz = 200 Å. The longitudinal broadening parameterγ is chosen to be one-tenth that of the transverse
broadening parameter0 which is a physically reasonable ratio.

A pronounced negative peak is present in the spectrum for all values of a magnetic field. It represents
strong transmission which is due to a saturation (or bleaching) of the excitonic state. Physically, the initial
exciton population created by the pump beam tends to amplify the probe beam when its energy is tuned at
or near the exciton ground state (this corresponds to the linear gain peak). A magnetic field makes the peak
deeper, without significant broadening, thus enhancing transmission further. Another feature of interest is in
the region of positive Imχ(3) that corresponds to opticalabsorption. This absorption may be attributed to the
formation of an excitonic molecule (biexciton). The initial exciton population enables the probe to be more
strongly absorbed when its energy matches the exciton–biexciton transition energyh̄(ωg0 − ωb).

The same basic features are repeated in the absorption spectrum presented in Fig. 2. Here we plot the
differential absorption1α as a function of the pump and probe detuning frequencies when the longitudinal
broadening parameterγ is one-tenth of the transverse broadening parameter0. As we can see, when the
pump frequency is nearly resonant with the excitonic absorption, the swing in the differential absorption1α

is very large(0.5× 105 cm−1–105 cm−1). Another feature to note is that the frequency separation between
the positive and negative peaks (associated with biexciton formation and exciton bleaching) is quite sensitive
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Fig. 2. The differential absorption1α as a function of pump and probe detuning energies for different values of a magnetic field. The
pump is set at exciton resonance for each value of a magnetic field. The longitudinal broadening parameter is one-tenth that of the
transverse broadening parameter.

to the magnetic field. This separation is not sensitive to damping (values ofγ and0) or slight detuning of the
pump. Therefore, we can use a magnetic field to tune this separation, thus realizing magneto-optical devices.

In Fig. 3, we show the differential refractive index1n as a function of the pump and probe detuning
frequency and the magnetic field. More complicated behaviour is exhibited by1n, with a strong negative
peak occurring at the energy between the positive and negative resonances in the absorption change. The
negative peak is related to the fact that1α has a positive dispersive peak on its low-energy side.

Although not shown in this paper, we also found that damping has a deleterious effect on the nonlinearity.
As the damping parameterγ increases from 0.10to 0, the swing in1n drops from 0.4 to 0.05 when no
magnetic field is present, resulting in a 20-fold reduction in the nonlinearity. However, when a magnetic flux
density of 10 T is present,1n drops by only a factor of 6. Therefore, a magnetic field makes the nonlinearity
less sensitive to damping.

The strong dependence of1n and1α on an external magnetic field has an important consequence for
device applications. One possible application of band-gap resonant optical nonlinearities in quantum-confined
systems isoptical bistabilityand switching devices associated with it. Milleret al. [2] pointed out that in
order to achieve optical bistability, one should provide alarge refractive index swingat a relativelylow
absorptionlevel. For bistable etalons using quantum wells, the relationship between minimum index change
and absorption in the material for bistability to be observable can be written as1n/αγ >

√
3/6π, where

λ is the wavelength of the pump beam. Using this criterion, Milleret al. [2] concluded that bistability is
not achievable in quantum-well etalons from excitonic mechanisms alone since in the region of large1n,
excitonic absorption is also very high. However, in quantum wires, the criterion for bistability can be met,
especially in the presence of a magnetic field. This is a significant advantage.
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Fig. 3. The differential refractive index1n as a function of pump and probe detuning energies for different values of a magnetic field.
All parameters and conditions are the same as in Fig. 2.

4. Conclusion

In conclusion, we have investigated the dependence of1n and1α in a quantum wire on an external
magnetic field. We found that the field makes these differential parameters less sensitive to damping and may
make it possible to observe optical bistability. Additionally, the field can modulate the spectral characteristics
of 1n and1α which may have device applications.
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