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Abstract
We review the current state-of-the-art graphene-enhanced thermal interface materials for the
management of heat in the next generation of electronics. Increased integration densities, speed
and power of electronic and optoelectronic devices require thermal interface materials with
substantially higher thermal conductivity, improved reliability, and lower cost. Graphene has
emerged as a promising filler material that can meet the demands of future high-speed and high-
powered electronics. This review describes the use of graphene as a filler in curing and non-
curing polymer matrices. Special attention is given to strategies for achieving the thermal
percolation threshold with its corresponding characteristic increase in the overall thermal
conductivity. Many applications require high thermal conductivity of composites, while
simultaneously preserving electrical insulation. A hybrid filler approach, using graphene and
boron nitride, is presented as a possible technology providing for the independent control of
electrical and thermal conduction. The reliability and lifespan performance of thermal interface
materials is an important consideration towards the determination of appropriate practical
applications. The present review addresses these issues in detail, demonstrating the promise of
graphene-enhanced thermal interface materials compared to alternative technologies.

Keywords: graphene, thermal management, thermal percolation, synergistic enhancement,
polymer composites, thermal conductivity, boron nitride

(Some figures may appear in colour only in the online journal)

1. Introduction

The extraordinary increase in transistor density in semi-
conductor products has revolutionized our society and intro-
duced new challenges towards its continued progress [1].
Although the decreasing feature size that enables ever-
increasing densification and computational power has

typically brought with it per-transistor energy efficiency
enhancements, this does not make up for the overall waste
heat production that results from having more switches in
total in the same area [2, 3]. This has led to a general trend for
very large-scale integration (VLSI) chips to increase in ther-
mal design power at every generation, with notable deviations
from this trend usually coming in the form of vast
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architectural improvements or splitting the die into multiple
logical cores. The increase in dissipated heat is problematic
for VLSI semiconductor chips because their functionality can
unacceptably alter at high temperatures, due for instance to
hot carrier degradation and bias temperature instability [4–6].
Now that devices are manufactured in the sub-10-nanometer
process, it is becoming more difficult to manage waste heat
production due to ever more important factors such as leakage
current and Joule heating in interconnect circuit elements of
decreasing cross-sectional area. Each of these serves to make
improved thermal dissipative solutions increasingly essential.
In parallel, the growing fields of light-emitting diode (LED)
lighting and solar energy along with the continuation of
aerospace products all require similar and improved heat
dissipation solutions [7–14].

The scale of the waste heat problem in semiconductors is
often lost in the numbers, even among researchers. The
average power density of some modern silicon VLSI chips
can reach as high as 1/100 of the power density at the top of
the Sun’s photosphere, which is approximately 6300W cm−2.
However, when one takes a more detailed look at a modern
VLSI chip one will find local spots in which the heat density
is substantially higher than the average [15]. VLSI chips
operate at such reasonable temperatures despite their stag-
gering heat production, solely because of their accompanying
engineered thermal dissipation solutions.

The most common technique to remove heat from VLSI
chips and other semiconductor circuits is to bring metals—
termed heat sinks—in contact with the chip so the heat may
diffuse into this additional component. The heat absorbed by
the sink is then more effectively dissipated to the environ-
ment, with a presumably infinite thermal reservoir capacity,
due to its large surface area. Often the heat sink employs heat
pipes—sealed tubes often with a phase-changing fluid inside
of it—that add convection and heat of vaporization at each
end as mechanisms of heat transfer along with the conduction
of the metallic pipe material [16, 17]. The heat sink class of
thermal dissipation solutions are cheap, reliable, small, and
ubiquitous.

All thermal dissipation solutions in which a solid heat-
producing device is placed in contact with a solid heat sink
suffer from physical junction thermal interface resistance.
Between any two solid, non-compliant materials, the total
percentage of surface area making contact can be quite low,
with a strong dependence on factors such as microscopic scale
surface roughness, material plasticity, and mounting pressure
[18–20]. A low proportion of direct surface contact at a
physical junction inevitably means that gaps are filled with
air, which has very poor heat transfer characteristics relative
to the metals on each side of the junction. The heat flow from
source to drain is analogous to and often thought of as an
electrical circuit, in which the metal components of the dis-
sipative solution are low-resistance wires with the junction
thought of as a resistor. The thermal resistance between two
physical junctions is often termed contact resistance, RC. The
thermal resistance of a junction is substantially reduced with
the use of an interstitial material called a thermal interface

material (TIM) [21]. The resistance of the junction is then:

= + +R
BLT

K
R R , 1TIM C C1 2 ( )

where BLT is the bondline thickness, K is the thermal con-
ductivity (TC) of the TIM itself, and RC1 and RC2 are the
contact resistances of each junction surface with the TIM
[22–24]. For an appropriate TIM, RTIM<RC. It is clear from
equation (1) that for increasing BLT the TC becomes an ever
more important factor in RTIM. Figure 1(a) shows a schematic
highlighting the benefit of TIMs in an exaggeratedly imper-
fect junction in which a greater portion of the junction’s
surface area is used for heat dissipation with TIMs applied
versus without.

TIM materials are often composed of metal solders,
mechanically compliant pads, and polymers typically com-
posited with filler materials [26]. Each type of TIM has its
own strengths and weaknesses. Metal TIMs to date have
achieved the lowest thermal interface resistance at initial
application. There can be variations in the precise function-
ality of this class of TIM, but they typically are introduced to
the junction as a hot liquid and are frozen to a solid between
the two surfaces. However, they can exist in either a perma-
nently liquid state or change between the two. Metal TIMs
can achieve a TC over 86W/mK—that of indium—and an
interfacial resistance of 0.005 K cm2/W [27–30]. The thermal
transport in metallic TIMs is predominantly contributed to by
their substantial population of free electrons, as in all metals,
carrying heat mostly freely within the material’s spatial con-
fines. Although these TIMs remain, at the time of this article,
as the best-performing at application, they are marred by
reliability problems and are more expensive than alternatives.
Due to the reliability concerns of metallic TIMs, it is a very
active area of research for these materials [27, 31–36]. Metal
TIM suffers from poor lifespan performance because it is
typically frozen between two surfaces of different coefficients
of thermal expansion to each other and itself. As the temp-
erature of the junction is inevitably varied, disadvantageous
thermomechanical stress is inadvertently applied to the TIM,
which eventually cracks it, leading to substantially reduced
performance. That same thermal expansion mechanism can
result in pushing fluid TIMs out of the junction in a process
called ‘pumping out.’ This can be very problematic in the
more modern, permanently fluid metal TIMs because there is
a risk of spilling onto electrical components susceptible to
electrical shorting failures. Another common class of TIMs is
the elastomeric thermal pads. These TIMs are very spongy
and flexible solid pads that push themselves into gaps in the
junction due to their resistance to mechanical deformation.
The highest TC achieved in this class of TIM in industry, to
the knowledge of the authors, is 62.5W/mK, as reported by
the product vendor [37]. Although the TC of these is
impressive, they suffer from large contact resistance, which
ultimately leads to a modest overall thermal resistance.

Similarly, a solid polymer or clay material can be used in
the direct encapsulation of less complex semiconductor cir-
cuits than modern VLSI chips for protection from environ-
mental contaminants. Although chips encapsulated in this
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manner will typically have fewer heat-producing circuit ele-
ments than in VLSI chips, devices of this class can include
high-power GaN amplifiers with substantial lifespan sensi-
tivity to operating temperature [38]. The thermal performance
of the encapsulation material is an important parameter
determining device operating temperatures, analogous to a
classic TIM. Consequently, chip encapsulation materials are
considered a type of TIM. Encapsulation TIMs are typically
even more sensitive to electrical conductivity (EC) due to
their direct contact with active circuit elements [39].
Figure 1(b) shows different types of TIMs and the applica-
tions in which they are typically used.

By far the most common class of TIM is that of the
polymeric type. These TIMs have a polymer matrix in which
a highly thermally conductive filler is almost always added to
form a composite. This class of TIMs has a higher thermal
resistance than metal-based TIMs but benefit from being
stable at higher temperatures and substantially simpler to
work with, especially when re-application is necessary. To
date, these TIMs tend to have a lower TC than thermal pads,
with a bulk TC in industry between 0.5–7.0W/mK at high

filler concentration, but have much less contact resistance,
leading to overall slightly better performance [40]. It should
be noted that the BLT and contact resistance are influenced by
the TIM’s rheological properties, particularly viscosity, and
often increasing the filler loading, thus the TC, of the com-
posite comes at the sacrifice of larger BLT, RC1, and RC2.

Polymeric TIMs have seen considerable research into
potential materials that could be used as new conductive fil-
lers. Some common polymers used are mineral and silicone
oil, epoxy, poly(methyl methacrylate) (PMMA) and poly-
ethylene [41–43]. The performance of base polymers can vary
widely by preparation. For instance, varying the stoichio-
metric ratio of diglycidyl ether of bisphenol-A (DGEBA)—a
common type of epoxy used in this field of research—can
result in a factor of two alteration in its thermal diffusivity
[44]. One constant requirement of all filler materials is that
their physical dimensions must be small enough so that a
consistent mixture may be formed within the TIM. Filler
materials used either in industry or research include silver,
copper, Al2O3, AlN, boron nitride, ZnO, diamond, graphite,
carbon nanotubes, few-layer graphene (FLG) and many

Figure 1. (a) Top: primarily air-gapped exaggerated physical interface in which noteworthy heat dissipation only occurs at a small point of
contact. Bottom: same junction after a TIM has been applied allowing substantially more heat dissipation over the otherwise air-gapped
regions. (b) Uses for different types of TIMs. (c)Material properties of a selection of popular filler materials. (d) Typical composite properties
for different TIMs with un-oriented fillers. [36] John Wiley & Sons. © 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
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others [45–57]. A selection of works into composites filled
with these filler materials is summarized in table 1. The
legend of acronyms used in table 1 is shown in table 2.
Figure 1(c) shows the bulk material properties for a selection
of potential filler materials. For each specific geometry of
filler, there exists a maximum practical filler loading that can
be achieved, often called the workability limit due to an
unacceptable increase in composite viscosity [58, 59]. High
TIM viscosity can complicate preparation and result in ever-
increasing contact resistance in a junction. Typical thermal
and electrical properties of composites with randomly orien-
ted fillers of a particular species are shown in figure 1(d).

Research into graphene-filled polymeric TIMs has
flourished since the discovery of graphene’s extraordinary
TC, ranging from 2000–5300W/mK [152–160]. Early stu-
dies showed graphene-filled TIMs with TCs as high as
5W/mK at room temperature (RT) with graphene filler
loading fractions of around 10 vol.%, further spurring gra-
phene TIM research [74, 100]. More recent studies into ran-
domly oriented graphene TIMs in a cured epoxy polymer
matrix have achieved TCs of ≈12W/mK [66, 102, 113].
Graphene has promising potential in developing the next
generation of TIMs. Counter-intuitively but interestingly,
graphene has been included into aerogel and displayed a
sharp and unprecedented reduction in TC to between 4.7 ×
10−3 and 5.9 × 10−3 W/mK at RT, though these results are
far from typical for graphene composites [161]. In a closely-
related vein of research to that of TIMs, graphene has been
composited with thermosetting plastics with the intention of
increasing the polymer’s fracture resistance, often with little
consideration for the composite thermal properties [162].

From a practical standpoint, graphene has the potential to
be a cheap filler material due to its composition of abundant
carbon, given maturity in synthesis techniques. Liquid-phase
exfoliation has stood out as a promising graphene synthesis
method with the potential for future economic scaling
[163–166]. This technique employs a high-energy sonicator
to vibrate the layers of a thick stack of graphite bound by
weak van der Waals forces suspended in a fluid apart into
few-layer graphene. Another interesting and scalable techni-
que is electrochemical exfoliation in which bulk graphite is
used as an electrode and solute ions intercalate into the gra-
phite. This intercalation results in inter-layer stretching that
either leads directly to exfoliation or easier exfoliation when it
is sonicated [167]. This technique also affords easy functio-
nalization of the resulting graphene flakes. It is also very
common and economical to oxidize graphite into graphite
oxide via Hummers’ method, more simply liquid-phase
exfoliates the graphite oxide, then finally reduces the resulting
graphene oxide to a form of pure graphene [168–173].
However, these processes have drawbacks primarily resulting
in defects that degrade the advantageous properties of the
graphene, with substantial defects in the case of graphene
derived from the reduction of graphene oxide [174–180].

In TIM research, the term ‘graphene’ refers to a mix of
single-layer graphene and FLG up to a few nanometers in

thickness [181]. Graphene’s in-plane TC is reduced with
increasing layers up until ≈8 total monolayers, at which point
the TC stabilizes to that of high-quality graphite at ≈2000W/
mK, but still remains more mechanically flexible [182–184].
However, the TC reduction resultant from contact between
graphene and a dissimilar material can be far more dramatic
[185]. Although there is a reduction of intrinsic TC for
increasing graphene layers, there is a competing mechanism
to consider where in FLG the outer layers of graphene can
insulate interior layers from the substantial TC degradation
from phonon scattering that results from contact to other
materials, in this case, polymer matrix [186–192]. The 2D
geometry of the graphene is an important factor leading to
composites composed of graphene having typically much
better TC enhancement relative to the 1D carbon nanotube
[193]. However, it is important that the graphene exists in the
composite with little bending lest it suffer a substantial
reduction in performance [194, 195].

Many applications require TIMs with electrically insu-
lating properties. Polymer TIMs can vary widely in their EC
depending primarily on the type, concentration and morph-
ology of the filler used. An electrically conductive filler
material can be used to fill a polymer TIM for such an
application up to a certain level—termed the electrical per-
colation threshold—where the overall EC of the composite
raises orders of magnitude, as can be seen in figure 2(a)
[196–200].

Of considerable importance to TIMs, electrical percola-
tion threshold has analogous behavior in TC known suitably
as thermal percolation threshold. The percolations of these
two material parameters are governed by the concentration
and morphology of filler material required for large-scale,
uninterrupted paths to become opened up from one filler
particle to the next. At this point, a low-resistance pathway,
be it thermal or electrical, from one end of the TIM to the
other becomes available and each respective property
enhances substantially. Figure 2(b) shows two idealized hot
and cold surfaces with a filler material between them. In the
left schematic, the concentration of spherical fillers is low
enough that most fillers are isolated from one another. In the
schematic on the right, the concentration is high enough that
fillers make contact, forming a long-range pathway from one
filler to the next, allowing for a low-resistance pathway
between the two surfaces. A common trend in research is to
add a second filler material with poor EC to allow the use of a
primary, superior thermally conductive but also electrically
conductive filler without an unacceptable increase in overall
TIM EC [77, 201].

This paper covers recent advances in the promising
graphene and graphene/boron nitride hybrid-filled TIMs. It
includes a greater in-depth discussion of the thermal perco-
lation threshold and role that adding different types of fillers
—often known as hybrid, binary, tertiary, etc filling—can
have on it. Also considered is the all-too-often overlooked
lifespan performance of these TIMs.
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Table 1. TIM thermal conductivity table.

Base polymer Filler
Cross-plane TC

(W/mK) Measurement method References

Misc. Fillers
PDMS None 0.2 ASTM D5470 [60]
Polyolefin None 0.3 LFA [61]
Epoxy None 0.2-0.22 LFA [62, 63]
Olefin oil None 0.145 THW [64]
Mineral oil None 0.27-0.3 ASTM D5470 [13, 65]
Epoxy None 0.17-0.22 LFA [66–68]
Silver Epoxy None 1.67 TPS [69]
Paraffin None 0.25 TPS [70]
Aerogel None 0.18 LFA [71]
Lauric acid None 0.215 THW [72]
Polyamide None 0.196 LFA [73]
1-tetradecanol None 0.32 TPS [49]
Commercial TIM Undisclosed 0.52-5.8 ASTM D5470 , LFA [13, 74, 75]
Commercial TIM added h-BN 2 wt.%/6 wt.% 0.56/.64 ASTM D5470 [75]
Epoxy AlN 60/74 vol.% 3.8/8.2 ASTM D5470 similar [76]
Epoxy h-BN 43.6 vol.% 3.46 LFA [77]
Epoxy h-BN 2.9 vol.%/45 vol.% 0.32/5.5 TPS, LFA [66]
Epoxy h-BN 15 vol.% (CPA) 6.1 TPS [78]
Epoxy h-BN 44 vol.% 9.0 LFA [79]
Epoxy h-BN 34 vol.% 4.4 LFA [80]
Epoxy h-BN 30 wt.% 0.6 LFA [81]
Epoxy h-BN 40 vol.% (CPA) 5.5 LFA [82]
Epoxy h-BN 20 vol.% 1.2 LFA [83]
Epoxy h-BN 50 vol.% (functionalized) 9.81 LFA [84]
Epoxy AlN 50 vol.% 1.21 TPS [85]
Epoxy Silica 50 vol.% 0.58 ASTM E1530 [45]
Epoxy SiC 72 wt.% (functionalized) 5.75 LFA [86]
Polyimide h-BN 7 wt.% 3 LFA [87]
Polyimide h-BN 60 wt.% 7.0 TPS [88]
Polyimide h-BN 60 wt.% 5.4 TWA [89]
Polyimide h-BN 30 wt.% 0.72 LFA [90]
PBT h-BN 70 vol.% (functionalized) 11 LFA [91]
PMMA h-BN 80 wt.% (functionalized) 10.2 LFA [91]
PCL h-BN 20 wt.% 1.96 LFA [92]
PVA h-BN 30 wt.% 4.41 LFA [93]
PVA h-BN 10 wt.% (functionalized) 5.4 LFA [94]
1-tetradecanol Ag nanowires 11.8 vol.% 1.46 TPS [49]
Silicone Oil ZnO nanoparticles 18.7 vol.% 0.44 TPS [53]
Silicone Oil Zno columns 18.7 vol.% 0.55 TPS [53]
Silicone Oil ZnO Czech hedgehog structure 18.7 vol.% 0.83 TPS [53]
Resin SiC 25 wt.% 1.28 Unique method [95]

Non-graphene carbon fillers
Epoxy Small graphite 4 wt.%/13 wt.%/20 wt.% 0.22/0.65/4.3 LFA [63]
Epoxy Large graphite 4 wt.%/13 wt.%/20 wt.% 0.87/2.95/4.3 LFA [63]
Epoxy CF 20 wt.% (non-heated/heated) 0.35/3.75 LFA [63]
Epoxy Graphite 10 wt.% 0.5 LFA [96]
Epoxy MWCNT 20 wt.% 0.4 LFA [97]
Epoxy Graphite nanoplatelet (non/functionalized) 10

wt.%
0.65/1.75 LFA [86]

Epoxy Graphite 5.4 vol.% (thicknesses 60 nm/30 nm/
4 nm)

1.1/1.35/1.43 ASTM C518 [62]

Epoxy Graphite nanoplatelet 14 wt.% 0.73 ASTM D5470 [98]
Silicone oil Graphite nanoplatelet 14 wt.% 0.5 ASTM D5470 [98]
Hatcol 2372 Graphite nanoplatelet 14 wt.% 0.48 ASTM D5470 [98]
Epoxy SWCNT 1 wt.% 0.49 ASTM D5470 similar [99]
Epoxy Graphite 44.3 wt.% 1.7 TPS [100]
Oil MWCNT 1 vol.% 0.36 THW [64]
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Table 1. (Continued.)

Base polymer Filler
Cross-plane TC

(W/mK) Measurement method References

CPE SWCNT 50 wt.% 1.6 TDTR [101]
Silver epoxy CB 5 vol.% 2 TPS [69]

Graphene fillers
Epoxy GnP 20 wt.% 1.5 LFA [97]
Epoxy Graphene 10 vol.% 5.1 LFA [74]
Epoxy Graphene 11.4 vol.%/43.6 vol.% 1.9/8.0 LFA [77]
Epoxy Graphene 2.7 vol.%/44.6 vol.% 0.49/11.4 LFA [66]
Epoxy Graphene 55 wt.% (thicknesses 3 nm/ 12 nm) 3.3/8 LFA [102]
Epoxy Graphene 1 wt.% (RA/CPA) 0.2/0.35 LFA [103]
Epoxy GnP 2 wt.% (functionalized) 0.52 LFA [104]
Epoxy Graphene 10 wt.% (functionalized) 1.53 LFA [96]
Epoxy rGO 2 wt.% 0.24 LFA [68]
Epoxy Graphene 1 wt.% (RA/CPA/IPA) 0.4/0.57/0.25 LFA [67]
Epoxy Graphene 0.92 vol.% (CPA) 2.13 LFA [105]
Epoxy Graphene 10 wt.% 0.67 LFA [106]
Epoxy Graphene 30 wt.% 4.9 LFA [107]
Epoxy Graphene 10 vol.% 3.35 LFA [108]
Epoxy GnP 8 wt.% 1.18 LFA [109]
Epoxy GnP 10 wt.% 6.5 LFA [110]
Epoxy Graphene alone/with PMMA 1 wt.% 0.6/1.4 ASTM D5470 similar [111]
Epoxy Graphene 5/10 vol.% 2.8/3.9 ASTM D5470 similar [112]
Epoxy GnP 25 vol.% 6.75 ASTM C518 [62]
Epoxy Graphene 24 vol.% 12.4 DSC [113]
Epoxy Graphene 10.1 wt.% 4.0 TPS [100]
Polyamide rGO wt.% 0.416 LFA [73]
Polyamide rGO 5 wt.% (functionalized) 0.41 LFA [114]
Polyamide rGO 8 wt.% (non/functionalized) 3.34/5.1 TPS [9]
Polyurethane rGO 1.04 wt.% 0.8 LFA [115]
Polyimide Graphene 12 wt.% 0.41 LFA [116]
Cellulose rGO 30 wt.% (IPA) 0.07 LFA [117]
Mineral oil Graphene 10 wt.%/20 wt.%/40 wt.% 3.1/4.8/6.7 ASTM D5470 [13]
Mineral oil Graphene 27% vol% 7.1 ASTM D5470 [65]
Silver epoxy Graphene 1 vol.%/5 vol.% 4.0/9.9 TPS [69]
Paraffin Graphene 0.5 wt.%/1 wt.%/20 wt.% 10/15/45 TPS [70]
Commercial TIM Added graphene 2 wt.%/4 wt.%/6 wt.% 0.7/0.75/0.8 ASTM D5470 [75]
Commercial TIM Added graphene 2 vol.% 14 LFA [74]
Polystyrene Graphene 20 wt.% 0.48 LFA [118]
Aerogel rGO 20 vol.% 2.64 LFA [71]
PDMS Graphene 0.5 wt.% (scaffolded) 0.4 ASTM D5470 [60]
Polyolefin Graphene 10 wt.% 5.6 LFA [61]
Eicosane Graphene 10 wt.% 2.0 TPS [119]
Lauric acid GnP 1 vol.% 0.49 THW [72]
Methyl vinyl silicone rGO 1.5 wt.% 2.7 LFA [10]
PVDF rGO 0.25 wt.% 2.35 LFA [120]

Hybrid fillers
Epoxy Graphene 21.8 vol.%, h-BN 21.8 vol.% 6.5 LFA [77]
Epoxy GnP 40 wt.%, Cu-NP 35 wt.% 13.5 LFA [121]
Epoxy MWCNT grown on GnP 20 wt.% 2.4 LFA [97]
Epoxy AlN nanowires 30 vol.%, AlN spheres 30 vol.% 5.23 LFA [122]
Epoxy BN nanowires 12.8 vol.%, BN spheres 30 vol.% 3.6 LFA [123]
Epoxy Al2O3-attached GnP 12 wt.% 1.49 LFA [124]
Epoxy Ag-attached h-BN 25.1 vol.% 3.1 LFA [125]
Epoxy Graphene oxide 49.6 wt.%, MWCNT 0.4 wt.% 4.4 LFA [126]
Epoxy h-BN, SiC 40 vol.% total (CPA) 5.77 LFA [127]
Epoxy h-BN, rGO 13.2 wt.% total (CPA) 5.1 LFA [128]
Epoxy MWCNT 5 wt.%, SiC 55 wt.% 6.8 LFA [129]
Epoxy AlN 40.9 wt.%, Al2O3 17.5 wt.% 3.4 LFA [130]
Epoxy rGO 20 wt.%, graphene 10 wt.% (scaffolded) 6.7 LFA [131]
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2. Recent advances in graphene TIMs

Some of the most thermally conductive polymeric TIMs have
employed the quasi-2D graphene as filler material, occa-
sionally including a second filler as an additional component.
Normally, filler materials are in general randomly oriented by
a classic mixing procedure. This random orientation of fillers
is less efficient at increasing composite TC than if direc-
tionally-selective processes are employed. Preferential orien-
tation of high aspect ratio fillers serves to effectively increase
the size of the flake along the dimension of interest and allows
for greater unobstructed heat pathways. Studies concerned
with selectively aligning graphene fillers have proved to be
useful in increasing TC improvement per graphene loading
level [202].

To the knowledge of the authors, the first work on TIMs
with graphene-like materials used as a filler was conducted by
Fukushima et al in 2006 [62, 169, 203]. This work started
with typical, macroscopic graphite that was oxidized and then
exfoliated. The thickness of the obtained filler material was
≈10 nm with lateral dimensions of ≈15 μm, a geometric
portfolio typically referred to as ‘few-layer graphene oxide’
today.

Tremendous interest in graphene as a filler of TIMs
followed an early demonstration of a TC enhancement of
2300% at only 10 vol.% filler loading in an epoxy matrix
[74], as shown in figure 3(a). These levels of TC enhancement
have since been confirmed by independent studies [100, 113].
Figure 3(b) shows that the composites exhibit a reduction in
TC as their temperatures are increased. This behavior is
consistent with Umklapp process-limited crystalline materi-
als. The increased dependence of TC on temperature with
higher loading samples shows the increasing reliance of the
composite’s heat flow on graphene. Also studied was an
unprecedented enhancement of a commercial TIM from ≈5.8
to 14W/mK with a small addition of 2 vol.% of graphene.
The Maxwell Garnett effective medium approximation, which
is known to be effective for lower loading fractions was used
to analyze the data [204, 205]. By treating graphene and
carbon nanotubes as dramatically oblate and prolate spher-
oids, respectively, superior TC of graphene composites is
effectively modeled [74]. The following is the derived
expression for a graphene-filled composite’s TC:

=
+ -

- + +
K K
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f K K f
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Table 1. (Continued.)

Base polymer Filler
Cross-plane TC

(W/mK) Measurement method References

Epoxy AlN 25 vol.%, MWCNT 1 vol.% 1.21 TPS [85]
Epoxy Graphene oxide 6 wt.%, AlN 50 wt.% 2.77 TPS [132]
Epoxy MWCNT 4 wt.%, AlN 25 wt.% 1 TPS [133]
Epoxy MWCNT 15 wt.%, Cu 40 wt.% 0.6 TPS [134]
Epoxy Graphene 0.9 wt.%, MWCNT 0.1 wt.% 0.3 TPS [135]
Epoxy Silica-coated AlN 50 vol.% 1.96 ASTM E1530 [45]
Epoxy Graphene 16 vol.%, h-BN 1 vol.% 4.72 DSC [113]
Epoxy Ag nanowires 4 vol.%, Al2O3 15 wt.% 1.08 TPS similar [136]
Epoxy Graphene 1.5 wt%, MgO 30 wt.% 0.51 ASTM D5470 similar [137]
Epoxy MgO-coated graphene 7 wt.% 0.4 ASTM C518 [138]
Epoxy Al2O3 30 wt.%, rGO 0.3 wt.% 0.33 ASTM E1461 [139]
Epoxy Graphene oxide-encapsulated h-BN 40 wt.% 2.2 ASTM D5470 [140]
Polyimide h-BN (μm scale) 21 wt.% h-BN (nm scale) 9

wt.%
1.2 TPS [141]

Polyimide BN-coated Cu nanoparticles, nanowires 10 wt.%
total

4.3 TPS [142]

Polyimide BN 50 wt.%, graphene 1 wt.% 2.11 ASTM D5470 [143]
Polyamide Graphene 20 wt.%, h-BN 1.5 wt.% 1.76 LFA [118]
Polyamide Graphene oxide 6.8 wt.%, h-BN 1.6 wt.% 0.9 LFA [144]
Polycarbonate GnP 18 wt.%, MWCNT 2 wt.% 1.39 TPS [145]
PDMS Graphene (scaffolded), CB 2 wt.%/8 wt.% 0.41//0.7 ASTM D5470 [60]
PPS h-BN (μm scale) 40 wt.%, h-BN (nm scale) 20

wt.%
2.64 TPS [146]

PPS h-BN 50 wt.%, MWCNT 1 wt.% 1.74 TPS similar [147]
PVA Graphene, MWCNT each Ag-attached 20 vol.%

total
12.3 LFA [148]

Polystyrene GnP 20 wt.%, h-BN 1.5 wt.% 0.66 LFA [118]
PVDF GnP 5 wt.%, nickel 8 wt.% 0.66 LFA [149]
Cyanate ester Graphene 5 wt.%, iron-nickel alloy 15 wt.% 4.1 TPS [150]
Polylactic acid Alumina 70 wt.%, graphene 1 wt.% 2.4 TPS [151]
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where RB is the microscopic interfacial resistance between
graphene and the matrix, Kp is the TC of the flakes, Km is the
TC of the matrix, f is the loading fraction and H is the
thickness of the flakes.

In all TIMs, one must consider the microscopic inter-
facial (Kapitza) resistance of fillers within the material, a
factor quite analogous to the macroscopic contact resistance
that the TIM is employed to ameliorate. There is an unfor-
tunate mismatch of phonon vibrational frequencies between
graphene and polymer matrix that functionalization can
address [206–209]. Using this technique, Song et al achieved
a TC of 1.53W/mK in an epoxy resin polymer with 10 wt.%
of functionalized graphene [96]. It has been shown in mole-
cular dynamics simulations, effective medium theory, and
others that the reduction of microscopic filler interfacial
resistance resulted in an increase of overall composite TC
[210–215]. Figures 4(a) and (b) show schematics of a linear
hydrocarbon chain grafted to a graphene sheet to produce a
functionalized surface. In figure 4(c), the TC, K*, of a simu-
lated composite is analyzed at varied graphene lateral
dimensions with different hydrocarbon areal densities, σ, on
the graphene flakes. Interestingly, the functionalized graphene
composites achieved higher TC until a filler length of ≈5 μm,
at which point the preservation of non-functionalized gra-
phene TC proved to be more impactful than thermal coupling
between graphene and polymer matrix. Shen et al also
directly examined the benefit of functionalization versus
graphene size with similar findings [216]. It was determined
that functionalization can inhibit composite TC by negatively
affecting large graphene flake intrinsic TC, establishing a
critical flake size at which point any larger flakes would result
in composites being negatively impacted by the process.

Alternatively, graphene functionalization can be useful to
prevent agglomerations and to attach components that can be
used to orient the graphene flake [103].

Using typically very defected graphene derived from the
reduction of graphene oxide, Ding et al observed an
improvement of 0.196 to 0.416W/mK in polyamide with a
graphene loading of 10 wt.% [73]. In this study, a surface
functionalization process was conducted, aiming to increase
the thermal coupling between the reduced graphene oxide and
the polymer matrix. Using a similar reduced graphene oxide
at only 1.5 wt.% and an additional functionalization step,
Zhang et al achieved a TC of 2.7W/mK in a silicone matrix
[10]. This TIM was then applied to bridge an LED chip and a
heat sink with a smaller temperature difference between the
two as the TIM TC increases. Cho et al used graphene
derived from graphene oxide and a polyamide matrix to create
a composite with a TC of 3.34W/mK at 5 wt.% [9]. Func-
tionalization has been applied to graphene composites using
gallic acid to attach a monomer and help with the dispersion
of graphene in DGEBA [217]. In a similar research strategy,
functionalization was used to attach silver particles to gra-
phene to also prevent graphene agglomeration [136].

Table 2. Table acronym legend.

Acronym Meaning

PDMS Poly(dimethylsiloxane)
LFA Laser flash analysis
TPS Transient plane source
RA Randomly aligned filler (studies without any alignment

classification are randomly oriented)
CPA Cross-plane filler preferential alignment
IPA In-plane filler preferential alignment
TWA Temperature wave analysis
PBT Polybutylene terephthalate
PCL Poly(caprolactone)
PVA Poly(vinyl alcohol)
PMMA poly(methyl methacrylate)
CF Carbon fiber
MWCNT Multi-walled carbon nanotube
SWCNT Single-walled carbon nanotube
THW Transient hot wire
CPE Conjugated polyelectrolytes
TDTR Time-domain thermoreflectance
CB Carbon black
GnP Graphene nanoplatelet
rGO Reduced graphene oxide
PVDF Poly(vinylidene fluoride)
PPS Poly(phenylene sulfide)

Figure 2. (a) EC of a composite above and below the electrical
percolation threshold with electrically conductive graphene fillers.
(b) Left: TIM between a hot and cold surface with low filler loading
with natural size variations. Right: same scenario with more fillers
and the development of a low-resistance percolation pathway. [114]
John Wiley & Sons. © 2019 WILEY‐VCH Verlag GmbH & Co.
KGaA, Weinheim.
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Researchers have used graphene functionalization to
attach magnetic particles, such as Fe3O4, to the sheets. Then,
once the functionalized graphene is dispersed within the
polymer a magnetic field is applied. Because the graphene
sheets are attached to the magnetic particles, they are aligned
along the magnetic field, leading to the ability to increase the
thermal transport along a particular direction. With an epoxy
polymer matrix, Yan et al raised the TC of a polymer from
0.17 to 0.41W/mK with the addition of 1 vol.% randomly
oriented graphene [67]. However, when the graphene was
functionalized with Fe3O4 and magnetically aligned, the
composite achieved an approximate TC of 0.57W/mK when
aligned parallel to the direction of thermal characterization
and 0.25 W/mK when perpendicular. A similar study was
conducted by Renteria et al, with the graphene source mat-
erial shown in figure 5(a). Figure 5(b) shows the clear
magnetic behavior exhibited by the graphene functionalized
by Fe3O4. The material was magnetized between two copper
foils and on top of a permanent magnet, as shown in
figure 5(c). TEM microscopy revealed the attachment of the
particles in 5(d). An optical microscopy image showing the
load level of the composite being low enough to pass light is
shown in figure 5(e). The TCs are shown in figure 5(f), ver-
ifying previous results that orienting graphene in this manner
is more efficient at enhancing the TC than when using a
random orientation approach [103]. Alternatively, the align-
ment of graphene has been achieved by Huang et al through
the clever use of interfaces between two different polymer
materials to preferentially trap graphene sheets at the interface
[218]. This serves to both locally increase the loading level
and allow for directional orientation along the interface.
Another intentional filler orientation work by Lian et al
reported a TC of 2.13W/mK, an enhancement of 1231%,
with only 0.92 vol.% of graphene [105]. Recently, graphene
alignment by way of a freeze-casting method that uses ice
crystals to preferentially orient the flakes has grown in
popularity [219–223]. An interesting technique to realize
semi-controllable graphene orientation is to fix graphene to a

3D structure, with a morphology similar to sponges, then cure
the graphene with or without the scaffold in a polymer of
choice [224, 225].

The directional control of graphene fillers is primarily of
interest because of its potential to achieve order-of-magnitude
improvement over current composites in the cross-plane
direction (from source to sink). Selective alignment along the
plane of a TIM—that is, perpendicular to the surface normal
of the heat-producing device—remains an area of important
inquiry. However, this has fewer immediately practical
implications as these composites are not well-suited for the
transfer of heat to a heat sink [226]. General TIM composite
techniques tend to naturally result in greater in-plane TC than
in the cross-plane direction, as can be seen in most studies
that measure in both directions [114, 227]. In very thin
composites of tens to hundreds of μm in thickness, often
referred to as ‘paper TIMs’, the in-plane TC can be greater
than in the cross-plane direction by orders of magnitude due
to the in-plane orientation of fillers [116, 117, 226, 228–234].

Prolongo et al analyzed the thermal performance increase
that resulted from filling DGEBA with graphene [106]. In this
work, a modest enhancement of TC was observed relative to
what others would find with a similar loading fraction of 10
wt.% graphene fillers of 0.67W/mK, compared to 0.18W/
mK measured of the pure epoxy. Similar results were
obtained previously with a TC of 0.65W/mK with a similar
filler, loading level and polymer matrix [86]. In each of these
instances, the graphene lateral dimensions were relatively
small, as small as 3 μm, often requiring thermal dissipation to
traverse through the highly-insulating matrix. In addition,
graphene intrinsic TC diminishes with reducing the lateral
size even if larger than the gray phonon mean free path of
≈750 nm [153, 235]. Since functionalization can aid in the
thermal coupling between graphene and matrix, if small flakes
are used the benefit of functionalization is more pronounced.

Park et al fabricated epoxy polymer TIMs cured directly
into an ASTM D5470-inspired copper interface for testing
[112]. An interfacial resistance of 3.2 and 4.3 mm2K/W for 5

Figure 3. (a) Enhancement of pure epoxy with increasing load level up to 10 vol.%. ‘Graphene-MLG-Hybrid Epoxy A’ corresponds to a
composite that was mixed for ≈12 h at 15 000 RPMs and ‘Graphene-MLG-Hybrid Epoxy B’ corresponds to a less mixed composite that
went through ≈10 h of 5000 RPMs of mixing. (b) Temperature-dependent TC for graphene and few-layer graphene TIMs at different load
levels. Reprinted with permission from [69]. Copyright (2012) American Chemical Society.
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and 10 vol.%, respectively, was measured at 330 K. The TC
of each sample was measured to be 2.8 and 3.9W/mK. These
findings highlight the need to consider the potential increases
in RC1 and RC2 resultant from a corresponding increase in
viscosity due to an increased filler level. This outcome of the
superior thermally conductive composite having a greater
interfacial resistance was observed elsewhere in a polyolefin
polymer matrix and was attributed to its mechanical proper-
ties [61].

Using graphene derived from chemical vapor deposition
and subsequent exfoliation, a method that produces graphene
of typically greater quality than that from the reduction of
graphene oxide, a TC of 4.9W/mK was achieved with a
30 wt.% loading in an epoxy resin [107]. In addition, the TC
was examined at different temperatures. There is a reduction
of performance at higher temperature, as one would expect
and has been observed elsewhere, but the extent of the
reduction proved to be modest, showing promising signs for
thermal stability. Wang et al similarly studied an epoxy
composite with 8 wt.% of graphene and achieved a 627%
improvement in TC, resulting in 1.18W/mK [109]. The
performance of composites based on these constituent mate-
rials can vary substantially from researcher to researcher,
displaying the great many influencing parameters that deter-
mine their properties. At a similar graphene loading of 8 wt.
%, Moriche et al reported a TC of ≈0.5W/mK in an epoxy
composite [110]. These influencing factors that can alter
composite performance, range from being intentional and
knowable to being difficult to identify.

Generally, graphene without defects is desirable because
its TC reduces with increased defect density. However, Liu
et al showed in a non-equilibrium molecular dynamics
simulation a mechanism for increased TC in a liquid n-octane
and graphene composite with increasing vacancy defects
[236]. Upon introducing vacancy defects to graphene at
concentrations up to 8%, the thermal conductance of the
composites is increased because the graphene fillers become
more structurally flexible, with a corresponding decrease in its

in-plane and out-of-plane phonon frequency. This reduction
in out-of-plane vibrational frequency aids in the thermal
coupling of the graphene and polymer. This highlights the
need to take holistic considerations when designing a com-
posite as opposed to what is traditionally good for an indi-
vidual component of the composite. Viewing this and other
works suggest that defect-based enhancements depend on the
type of defect and polymer type [237].

An interesting and relatively recent strategy has been to
attach graphene to another larger material to achieve a desired
larger-scale placement and orientation. This technique was
used by Eksik et al to make PMMA balls coated with gra-
phene that were then used to fill an epoxy [111]. SEM
micrographs of varying graphene loadings and magnifications
are shown in figures 6(a) and (b). Using this technique, the
researchers achieved ≈1.4W/mK at 1 wt.%, versus only
≈0.6W/mK of equivalent loading graphene without PMMA
grafting, as shown in figure 6(c). A similar idea was applied
by Li et al to attach reduced graphene oxide to thermoplastic
polyurethane balls and then hot-press mold the balls together,
achieving a TC of 0.8W/mK at 1.04 wt.% [115].

Graphene fillers have been applied to phase-change
materials, often used in TIMs and thermal energy storage
[238]. An aerogel material’s TC has been increased from 0.18
to 2.64W/mK with the inclusion of approximately 20 vol.%
of graphene oxide [71]. The phase-changing polymer ico-
sane’s TC was enhanced by a factor of 400% to ≈2.1W/mK
through the inclusion of 10 wt.% of graphene by Fang et al
[119]. These results will allow for better temperature uni-
formity within each phase-changing polymer due to the
enhanced heat flow characteristics with strong implications in
the ever-more-important lithium battery field [70]. In
figure 6(d), an SEM micrograph of a prepared graphene and
paraffin composite is shown. In figure 6(e), TCs of different
graphene-enhanced composites for realistic battery tempera-
tures are presented with >45W/mK performance at slightly
above RT. Graphene types A, B, and C in this figure corre-
spond to increasing thicknesses of graphene, from mostly

Figure 4. (a) Section of a graphene flake with two linear hydrocarbon chains grafted on. (b) Six linear hydrocarbons grafted onto graphene.
(c) Non-equilibrium molecular dynamics simulation composite TC with different areal densities of grafted hydrocarbons (σ) per square
angstrom. Increasing the density of hydrocarbon attachments results in better performance until the length of graphene approaches
approximately 5 microns, at which point the intrinsic graphene TC reduction becomes a more dominant mechanism in the composite.
Reproduced from [126]. CC BY 3.0.
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single-layer to an average thickness of 8 nm. In a lauric acid
phase-change material, a TC enhancement of 230% was
obtained with as little as 1 vol.% [72].

3. Percolation

When a composite is loaded past a critical level, there is a
precipitous increase in conductive ability, whether it be
electrical or thermal, as mentioned previously and illustrated
in figure 2. This occurs because as the concentration of
conductive filler particles increases eventually full pathways
from filler to filler form to allow large-scale, low-resistance

networks through the composite. Electrical percolation of
composites employing electrically conductive fillers such as
metals or carbon allotropes is very strongly supported by
research [99, 169, 239–242]. The EC of composites is well
described by a power law, s » -f fE

t( ) , where σ is the EC, f
is the filler volume fraction, fE is the percolation threshold
loading level and t is the critical exponent.

The exact nature and efficacy of thermal percolation in
composites were until recently not considered a settled issue
in science [64, 159, 243–249]. It is clear that the change of
composite thermal properties that results from percolation is
more modest than that of EC, which can span over ten orders
of magnitude, strongly depending on the matrix and fillers
used [77]. The less obvious observable signs of thermal
percolation relative to electrical percolation are often attrib-
uted to the simple fact that the span of available materials’ TC
is far more constrained than in the case of EC. The dynamic
range of TC—a total ratio of Kf/Km≈105—in materials that
one could use in practical applications is much lower than that
of EC—a total ratio of σf/σm≈1015, resulting in effectively
no pre-percolated polymer electrical conduction while still
providing some thermal conduction [66, 244]. Since the ratio
of Kf/Km is often ten orders of magnitude less than σf/σm, the
TC enhancement at the percolation threshold is less pre-
cipitous than EC enhancement at its respective percolation
threshold.

More recent works have more conclusively shown the
onset of thermal percolation in graphene and h-BN compo-
sites [66, 249]. Figures 7(a) and (b) show TC performance of
graphene and h-BN showing superlinear TC enhancement
after a certain filler loading fraction—the percolation thresh-
old [243, 246–252]. The thermal percolations were observed
at about 30 vol.% in the graphene composites and 23 vol.% in
the h-BN composites. The enhancement of TC as the loading
fraction is increased, was fitted to Maxwell Garnett, Agari,
and finally with a fantastic agreement, the semi-empirical
Lewis–Nielsen model [253–257]. This specific behavior is
somewhat different from a previous study by Shtein et al into
graphene composite percolation in which pre-percolation
behavior was found to match Nans’ model and post-perco-
lation matched the adjusted critical power law [249, 258]. The
Lewis–Nielsen TC model is,
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where A is equal to kE−1 where kE is the generalized Ein-
stein coefficient, B=(Kf/Km−1)/(Kf/Km+A), and

f fY = + - f1 1 m m
2(( ) ) where fm is the maximum pack-

ing fraction [259]. The values of parameters A and fm are
unknown for quasi-2D fillers such as graphene and h-BN, and
were treated as fitting parameters.

It was found that loading beyond the thermal percolation
threshold placed considerable importance on the cross-plane
TC of the graphene fillers because thermal transport in this
direction facilitated the passing on of heat from one flake to
the next in the percolation network. The graphene composites
exhibited consistently higher TC than their h-BN counter-
parts. This is due to the superiority of graphene intrinsic TC

Figure 5. (a) SEM image of graphene derived by liquid-phase
exfoliation. (b) Photograph showing the response to the magneti-
cally-functionalized graphene powder to an applied magnetic field.
(c) Functionalized graphene between two copper foils and placed on
a permanent magnet for filler alignment. (d) TEM micrograph of
graphene flake with attached Fe3O4. (e) Optical microscopy image
with low concentration of aligned filler. (f) Apparent TC at different
temperatures. The superiority of intentionally oriented graphene
flakes to randomly orientated graphene and pure epoxy is evident.
Reprinted from [133], Copyright (2015), with permission from
Elsevier.
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relative to that of h-BN, at a still impressive experimentally-
determined TC of ≈230 to ≈480W/mK at RT and up to
≈1000W/mK when determined theoretically [260–266].

Using the Lewis–Nielsen model, a surprisingly low
apparent TC of ≈37W/mK was determined for the graphene
materials used inside the TIM. This lower-than-expected TC
was attributed to the unexpectedly important impact of filler
cross-plane TC to the overall thermal transport. If the com-
posite is filled past its percolation threshold, much of its heat
will be transporting from one flake to another lying on top of
it, forcing transport in the cross-plane direction. TC in this
direction can be two orders of magnitude less than in the in-
plane direction. It is also possible that the matrix and filler
defects can induce phonon scattering that negatively affects
the TC. However, the amount of scattering necessary to alone
explain the low apparent TC of graphene is less likely. The
effect of microscopic contact resistance—Kapitza resistance
—is likely a contributor and could be greatly diminished in
future works with functionalization processes [267–269].

Figure 7(c) shows a comparison of thermal transport for
different composite parameters from a finite element heat
diffusion numerical simulation. The subset schematic in
figure 7(c) shows a quasi-2D filler within an epoxy matrix.
This filler has heat applied and that heat is transported via
diffusion away from the schematic’s exposed face towards the
end of the flake. Then, the heat traverses primarily vertically
through the epoxy, across a distance d, and into another filler.
Plotted in (7c) is the thermal flux of flakes with high-quality
graphite in-plane TC of 2,000W/mK and various cross-plane
TCs with different distances between the adjacent flakes.
Evident from the plot is the considerable importance of the
overall thermal flux, amounting to a factor of ≈5, on the

cross-plane TC when the fillers are making contact, such as in
the thermal percolative state. In figure 7(d) the total thermal
flux versus distance between flakes is considered for varying
flake lateral sizes and fixed thicknesses. The importance of
large flakes below the percolation threshold, and thus large
inter-planar distance, is clear and is due to the opening of
long, low-resistance pathways and the reduction of reliance
on the comparatively low cross-plane TC.

Recently, a new composite TC differential equation
model was reported that agrees well with this work [270]. The
model is written as,
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where X is the ratio of the final composite thermal TC to the
pure matrix TC, f is the filler volume fraction, R1 and R2 are
the ratios of the filler effective TCs to that of the matrix, Λ is
the volume fraction of particles that are in tight clusters as a
result of imperfect mixtures, and B characterizes how particles
and their clusters deviate from a spherical shape. With this
model, we are aware of thermal boundary resistances, per-
colative networks, and imperfect mixture agglomerations.

4. High-loading non-curing graphene thermal
interface materials

Cured, solid-form TIMs receive more attention in research
possibly because of the ease of working with them relative to
non-curing forms, in addition to their direct comparison to
chip encapsulation materials. However, a more representative
comparison between the TIMs used in the VLSI package and

Figure 6. In this study, graphene was grafted onto PMMA spheres to provide structure to the graphene. (a) SEM image of pure PMMA
spheres. (b) PMMA spheres with 16 wt.% graphene. (c) TC results of graphene attached to PMMA spheres (GPMMA) as red dots and
graphene without PMMA attachment (GPL) as black squares. (d) SEM micrograph of graphene and phase-change material. (e) TC
performance of graphene-enhanced paraffin over realistic battery temperatures. (a)–(c) Reprinted from [170], Copyright (2016), with
permission from Elsevier. (d) and (e) Reprinted from [171], Copyright (2014), with permission from Elsevier.
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heat sink junctions can be made in studies of non-curing, at
least semi-fluid TIMs, despite the relative difficulty of
working with them. It is common for non-curing TIMs to be
out-performed by curing TIMs, all other things being held
equal, including polymer base TC. Current commercial non-
curing TIMs have a bulk TC range of 0.5–7 W/mK and need
to reach 20–25 W/mK to allow for next-generation devices
[40, 271].

Research into graphene-enhanced non-curing TIMs was
up until recently exclusively studied using commercial TIMs
as the matrix. These matrix materials typically start at a
relatively high viscosity primarily due to having their own
filler materials already incorporated, leaving little practical
headroom in which one may add additional fillers. In spite of
this, the addition of small quantities of graphene into these
materials has shown impressive TC improvements
[69, 74, 75, 272]. The presence of the commercial TIMs’
undisclosed filler materials makes a detailed analysis of the
observed behavior difficult.

Naghibi et al worked on a graphene-based non-curing
TIM with a simple mineral oil base matrix for both greater
insight into material properties and more room with respect to
viscosity to further load with graphene [65]. The ≈15 μm
lateral dimension graphene was mixed in with the mineral oil
in addition to acetone to prevent agglomeration [273, 274].
After mixing, the acetone was removed from the mixture by

exposure to 70 °C for ≈2 h in a furnace. It was suspected that
the incorporation of acetone in the mixing process helped
preserve the filler quality.

Using the popular ASTM D5470 steady-state technique,
the junction thermal resistance and TCs of these composites
were characterized between two parallel plates. The thermal
resistances of the composites between the two plates at dif-
ferent distances and composite concentrations are shown in
figure 8(a). The inverse of the slope for every fitted line for
each composite corresponds to its TC. The y-intercept of this
fitted line is the sum of RC1 and RC2 from equation (1), which
are equivalent to one another given the top and bottom
junctions were identical. The reduction of the slope of the
composites’ fitted lines with increasing graphene content
indicates the steady increase of bulk TC for increasing filler
loadings. As previously discussed, the increasing importance
of TIM TC in real-world BLTs of 300 μm is clearly presented
by these findings.

Using the inverses of slopes from figures 8(a), (b) shows
the derived TCs of the tested composites. The error bars
convey the errors from linear regression. A sharp increase of
TC, from 0.3 to 1.2W/mK, can be seen after applying a
relatively low loading of 1.9 vol.%, indicating an early onset
of thermal percolation, followed by the beginning of satur-
ation behavior at 8.5 vol.%. This behavior is well matched
with a power scaling law, f f= -K ATIM th

p( ) , where A is a

Figure 7. TC versus volume fraction with linear and Lewis–Nielsen trend lines for comparison. (a) Graphene composites. (b) h-BN
composites. Superior TC of graphene composites compared to h-BN composites is attributed to the superior intrinsic TC of graphene.
(c) Thermal flux versus distance between flakes shown in the schematic. Each line corresponds to a simulation result with a different cross-
plane TC, varying from 0.2–200 W/mK. (d) Same plot for varying flake lateral dimensions. Reprinted with permission from [71]. Copyright
(2018) American Chemical Society.
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fitting parameter related to the effective TC with considera-
tion to boundary resistance, fth is the percolation threshold
and p is the universal exponent. TC saturation in non-curing
TIMs has been observed previously, although it is generally
absent in works looking into curing composites [275–277].
The saturation of TC is attributed to an increase of filler
interface resistance as the concentration of graphene increases
as a specific interaction between the filler and this individual
polymer matrix [278].

Figure 8(c) shows the contact resistance of the tested
composites, with increasing contact resistance for increasing
loading fraction. Assuming the bulk TC of the composite is
negligible in comparison to that of the mating faces in the
junction, the contact resistance can be described by the fol-
lowing semi-empirical model:
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where = ¢ + G G G2 2 . G′ and G″ are the storage and loss
modulus of the TIMs, P is the applied atmospheric pressure in
this case, ζ is the average roughness of the two identical
surfaces, and c and n are empirical coefficients [275]. Pre-
dicting the thermal contact resistance with any accuracy from
successive experiments at constant pressure is challenging
given that the two remaining parameters—kTIM and G—are
affected by graphene loading and oppose one another in the

determination of RC . This equation exposes that in TIMs well
described by it there is an optimum filler loading in which
kTIM may be substantially enhanced with little increase in RC .

The bulk TC of the present 19.8 vol.% graphene TIM is
compared with high-end commercial TIM products in
figure 8(d). Industry self-reports TCs higher than 11 w/mK
but does not disclose the technique used to arrive at those
values. Here, we present all of the TIM TCs measured with
the ASTM D5470 technique compared with the values
reported by the manufacturers. The 19.8 vol.% graphene TIM
performs better than all tested commercial TIMs. The closest
performing TIM—PK Pro-3—uses ≈90 wt.% of aluminum
and zinc oxide fillers, more than twice the loading level of the
compared graphene TIM.

These TIMs have been applied to solar cells to study the
reduction of performance that results from operating at ele-
vated temperatures [13]. The poorer performance appears as a
decrease in the voltage across the cell’s two terminals. For
every increase in operating temperature in degrees Celsius
above 40 °C there is an efficiency loss of 0.35%–0.5%
[279, 280]. Silicon-based solar cells are known to reach
temperatures up to 65 ◦C, corresponding to up to a 12.5%
decrease in efficiency.

It is common practice in solar cell research to analyze its
performance under simulated sunlight and at greater-than-
natural illumination for among other reasons, to provide the

Figure 8. (a) Thermal resistance per unit area versus BLT. (b) TC as a function of volume fraction determined from the inverse of the slopes
in a. (c) Contact resistance versus volume fraction with behavior dominated by the role of viscosity relating the two parameters. (d)
Comparison of graphene TIMs studied with claims of TIM vendors studied with ASTM D5470. [216] John Wiley & Sons. © 2020 WILEY‐
VCH Verlag GmbH & Co. KGaA, Weinheim.
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heat to elevate the device in testing above RT [281, 282]. In
Mahadevan et alʼs work, a solar cell was fixed to a heat sink
with different TIMs applied between and was illuminated
with 70x and 200x natural solar illumination levels, with the
former case being considered at present. Figure 9(a) shows
the temperature change of a solar cell over time with different
TIMs. It is evident that when the solar cell had the higher
graphene concentration TIMs, the temperature that it reached
remained lower, showing a better thermal coupling to its heat
sink. Figure 9(b) shows the corresponding open-circuit vol-
tages—a common photovoltaic metric of efficiency—that
displays the increased efficiency gained for maintaining a
lower operating temperature.

5. Hybridization and control of EC

Researchers have long noted a beneficial TC performance of
composites that employ multiple types of fillers, a filling
strategy known as hybridization or binary, tertiary, etc filling
[47, 85, 129, 141, 147, 283–289]. This synergistic effect can
be seen when including multiple filler materials at a certain
constituent ratio can achieve a greater TC enhancement than
with either individual filler at identical overall loading level.
This effect arises from the differing morphology of the two
filler materials and how they can aid one another. Despite the
phenomenal intrinsic TC of graphene, which one could rea-
sonably expect to overpower any potential synergistic effect,
it has been widely reported in graphene composites
[74, 118, 144, 290, 291]. This benefit occurs due to a second
filler’s ability to prevent graphene agglomeration in a com-
posite and its ability to bridge gaps between graphene flakes
that would otherwise force heat transport through the resistive
polymer.

Due to the desire for high TC but low EC TIMs, hybri-
dization is a promising way to leverage the extremely high
TC graphene fillers while controlling the resulting composite
EC that they cause. It was shown previously by Shtein et al
that a hybrid composite of very disparate geometries of gra-
phene flakes and boron nitride nanoparticles could achieve
synergy and a suppression of composite EC [113]. In this

work, the electrically conductive graphene flakes were
effectively isolated from one another by the smaller elec-
trically insulating boron nitride materials fitting between
them, allowing thermal but not electrical conduction. This can
be seen in figures 10(a) and (b), which show an SEM image
and a schematic showing smaller, red boron nitride fitting
between blue graphene flakes. The superiority of the com-
posites’ TC with a hybridization of filler material along with a
reduction in EC can be seen in figure 10(c).

Lewis et al prepared hybrid composites of graphene and
h-BN flakes of similar geometries to investigate both whether
one can achieve a more finely-tuned control on EC and as a
contrapositive verification of the role that dissimilar filler
geometries have in producing a synergistic effect [77].
Figure 11(a) shows a schematic of the use of hybrid fillers to
selectively control composite EC while preserving useful TC.
The graphene and h-BN flakes used both had thicknesses up

Figure 9. (a) Temperature of a solar cell over time under 70x natural solar illumination with different TIMs applied between it and a heat sink.
(b) Corresponding open-circuit voltage of the solar cell that results from the device temperature. Reproduced from [13]. CC BY 3.0.

Figure 10. (a) Schematic showing mixed graphene flakes and smaller
boron nitride particles. (b) SEM image of an epoxy composite with
arrows pointing out boron nitride particles. (c) Plot of TC and EC of
composites with total filler loading composed of 17 vol.%. ‘nm-BN’
corresponds to composites filled with boron nitride of 200 nm in
lateral dimensions. ‘μm-BN’ corresponds to composites of boron
nitride of approximately 40 microns. ‘Hybrid 1’ is 15 vol.% of μm-
BN and 2 vol.% of nm-BN. ‘Hybrid 2’ is 16 vol.% of GnP and 1 vol.
% of nm-BN. Note the increase of TC relative to the composite of
pure GnPs, which is certainly a result of synergy, as well as the sharp
reduction of EC. Reprinted with permission from [72]. Copyright
(2015) American Chemical Society.
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to 12 nm and lateral dimensions up to 8 μm. It was hypo-
thesized that if the two materials were of comparable geo-
metries then they would be less effective at isolating one
another than had been observed previously.

Figure 11(b) shows Raman signatures of a 44 vol.%
composite with 50% constituent fraction of graphene and
50% of h-BN (equal parts graphene and h-BN by volume).
Characteristic peaks of graphene are present as well as the E2g

peak of h-BN [292–295]. The inset image shows selected
high-loading samples. Figure 11(c) shows a pseudo-colorized
fractured surface of composite with pink, electrically charging
h-BN flakes dispersed among green and blue electrically
conducting graphene flakes. This image shows one instance in
which neighboring graphene flakes are isolated by h-BN.

These composites’ thermal diffusivities were measured
using the common laser flash analysis (LFA) technique
[296, 297]. Using densities determined from Archimedes’
principle and heat capacity calculated from the Kopp–Neu-
mann rule, the TC is calculated from the classic relation
K=α×ρ×cp, where α is the thermal diffusivity, ρ is the
volumetric mass density and cp is the specific heat capacity.
The LFA technique directly measures α, but combining LFA
with techniques to determine the other material parameters is
an exceedingly popular TC measurement strategy. The heat
capacity was calculated using 0.807 J/gK for h-BN and
0.72 J/gK for graphite, which only notably deviates from

graphene to the ZA phonon dispersion in graphite whose
states can be unfilled below 100 K [298–302].

Figure 12(a) displays the TC of color-coded composites
of 11.4 vol.%, 18.1 vol.%, 25.5 vol.% and 43.6 vol.%. In all
instances, as the total filler level is increased the overall TC is
enhanced relative to that constituent fraction at a lower total
loading. In addition, as the constituent fraction of the com-
posites moves to higher levels of graphene (left to right on the
x axis), the TC is uniformly enhanced. This result shows that
a synergistic enhancement was not observed in these com-
posites. In all tested composites, the superiority of graphene
to that of h-BN remained the dominant factor. This provides
contrapositive verification of the attribution of synergy to
dissimilar filler geometries. The increased data scatter in the
25.5 vol.% is ascribed to that filler loading percentage’s
proximity to the percolation threshold in composites of this
matrix and filler geometry [66]. This would result in some
composites stochastically achieving better percolation net-
works than others, whereas composites above or below this
loading are either firmly within or outside of a percolative
filling regime. The asymmetric error bar on the 100% gra-
phene sample at 43.6 vol.% is attributed to a clear error in the
measurement of that sample’s density that results from sur-
face bubble formation.

The cross-plane ECs of the composites were measured by
simply painting silver electrodes on opposing faces of the
samples and measuring the resistance from the two-probe

Figure 11. (a) Raman spectrum of half graphene and half h-BN composite with total loading of 44 vol.%. (b) Pseudo-colored SEM image of a
fractured surface of a 13 vol.% of graphene and h-BN per composite. (c) Top schematic shows a pure graphene composite in which electrons
and phonons freely move throughout. Middle schematic shows some boron nitride flakes of similar geometries thrown in, which create paths
that only easily transmit phonons, but not electrons, reducing overall composite EC. Bottom schematic shows a concentration of boron nitride
flakes where entire electrical percolation networks have been disrupted. Reproduced from [190]. © IOP Publishing Ltd. All rights reserved.
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method in a process that has been used in similar studies
[303, 304]. This method allowed for easier determination of
cross-plane EC than the 4-probe or van der Pauw methods
could provide given the geometry of the samples.
Figure 12(b) shows the EC in the same manner as figure 12(a)
with the constituent fraction of graphene on the x axis. The
obtained EC results show a range of at least 11 orders of
magnitude, though the full range is obscured due to exper-
imental limitations. For all total filler levels, a strong
dependence on the constituent fraction of graphene is
observed with a power-law dependence. At total filler level
greater than 11.4 vol.% the composites’ ECs saturate at
constituent graphene level of 25%.

Another work by Cui et al on composites with similar
materials of different shapes, sheets of h-BN of ≈250 nm and
sheets of graphene of ≈5 μm in lateral size, noted TC synergy
[118]. The authors achieved a TC of 1.31W/mK in poly-
amide with 20 wt.% graphene compared to 0.28W/mK in
pure polyamide. When the authors included a mere 1.5 wt.%
in addition to the graphene, they achieved a TC of 1.76W/
mK. It very likely that this marked enhancement relative to
the previous sample with only graphene is due to synergistic
enhancement of the two fillers. It is true that in these com-
posites the overall filler loading is increased and could be
approaching the percolation regime of thermal performance,
though this observed percolation threshold is lower than
where others have found it.

Hybrid composites have been interestingly investigated
with graphene and alumina spheres of multiple diameters
(5 and 0.7 μm), effectively using three loading materials in a
silicone oil matrix [305]. The different size alumina fillers are
varied as a parameter to achieve higher packing density at the
expense of larger fillers to allow larger unobstructed thermal
pathways [306]. In a composite only composed of the two
alumina sphere sizes, an optimal synergistic ratio of 15 vol.%
of smaller alumina and 45 vol.% of larger alumina was
observed. This parametric optimization between the con-
centrations of two filler types is the defining characteristic of
the synergy mechanism. Raising the total concentration at
fixed constituent ratio of the alumina composite from

60 vol.% to 63 vol.% results in an increase of 0.49W/mK,
and adding just 1 wt.% of graphene results in a further
0.75W/mK improvement up to a total of ≈3.5W/mK.
Similarly, Guan et al found that epoxy filled with 80 wt.%
had a TC of 0.8W/mK while substituting the last 7 wt.% for
graphene achieved a TC of 1.8W/mK [307].

Barani et al published a study of graphene and copper
nanoparticle hybrid-filled TIMs that exhibited likely syner-
gistic thermal properties [121]. This work used graphene with
lateral dimensions of ≈25 μm and copper spheres with dia-
meters of 40, 100, and 580 nm. Given the copper nano-
particles’ conformance to the Wiedemann–Franz Law, it is
vitally important to preserve the EC of the material to, in turn,
preserve the TC. To that end, the smallest copper nanoparticle
size corresponded to roughly the electron mean free path in
copper. Generally, the mean free paths of whatever dominant
heat carrier of a considered filler material is a crucial con-
sideration in the minimum size that can still effectively
transport heat. In the case of copper nanoparticle fillers,
extraordinary care must be taken to prevent rapid and unsafe
oxidation that can reduce the TC by an order of magnitude
[308]. Figure 13(a) shows the thermal diffusivity of 5 wt.%,
15 wt.%, and 40 wt.% graphene TIMs with increasing copper
loading as binary TIMs. As expected, the composites that
contain a higher load level of graphene fillers have a higher
thermal diffusivity. Figures 13(b)–(d) show the calculated TC
of each composite. Notably, in figure 13(c), a sharp increase
in the TC of the 15 wt.% TIM can be seen between 35 wt.%–

40 wt.%. This dramatic enhancement in TC followed by little
improvement, even possibly a slight reduction, suggests that a
critical optimum of constituent fraction has been reached and
moving past it does not further improve performance.

6. Lifespan reliability and performance

Along with the associated costs, one of the primary reasons
polymeric TIMs receive such preferential usage in industry is
due to their lifespan performance versus, for instance, metallic
and pad TIMs. It is perceived by the current authors to be a

Figure 12. (a) TC of each set of total filler level versus the graphene/h-BN constituent ratio. Data points at 1.00 on the x axis correspond to a
sample at the stated vol.% composed of only graphene and matrix. (b) EC of the studied composites displaying a power scaling law.
Reproduced from [190]. © IOP Publishing Ltd. All rights reserved.
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short-coming of TIM research that lifespan performance of
novel TIMs is so seldom considered, especially in graphene-
based TIMs, likely borne from the time commitment such a
study would entail. TIMs are by their very nature applied in
very difficult environments and need to maintain performance
for as long as possible, very often for the entire lifespan of the
device. As the devices are turned on and off, operated in
humid environments, and exposed to environmental con-
taminants, their intrinsic material characteristics can alter as
well as the morphology of the mating surface in which they
are applied. Each of these alterations can lead to catastrophic
failure from cracking or being pumped out of the junction as a
result of the thermal expansion, contraction and warping over
the course of high- and low-power device state fluctuations.
Perhaps the largest factor affecting the lifespan performance
of TIM in-junction is the coefficient of thermal expansion
mismatches between the TIM and junction. The problems that
can arise can take the form of cracks, voids, or intrinsic
denaturing of the TIM. Figures 14(a)–(c) show acoustic
microscopy images of a TIM application that is still intact,
exhibits voids and has cracks [309]. Figures 14(d)–(f) show
corresponding infrared thermography images a few milli-
seconds after powering the device, which shows faster heat
spread on the TIM with superior coverage.

Although the fraction of published works that report
lifespan performance to total works published on polymeric
TIMs is quite low, researchers have considered this often

overlooked aspect [115, 309–311]. The literature on this
matter, unfortunately, is quite inconsistent likely due to the
lack of a universal standard technique for reliability and the
likelihood that any developed standard technique would be
unable to provide predictive performance for every individual
device application. There are three classes of accelerated
aging techniques within which most of the experiments
conducted into TIM reliability can be categorized: elevated
temperature storage, temperature cycling, and power
cycling [310].

Elevated temperature storage procedures hold a TIM
typically in a junction sandwich at a uniform elevated temp-
erature for an extended period of time. Very importantly, they
may or may not employ a high humidity environment to
simulate important moisture interactions. The performance of
TIMs in this test varies greatly depending on the TIM and
junction materials, showing both enhanced and hindered
performance over the course of treatment [312–319]. Like-
wise, a TIM can either experience enhancement from
humidity that results from increased wetting or experience
impairment of the adhesion ability of the polymer matrix
[313, 320]. The lack of consistency in this type of procedure
has numerous causes from differences in the procedure, dif-
ferent materials, chemical degradation, and physical form
changes.

More representative of realistic TIM conditions is the
temperature cycling procedure. In this technique, the TIMs

Figure 13. (a) Thermal diffusivity of 5 wt.%, 15 wt.%, and 40 wt.% graphene TIMs with increasing copper loading as binary TIMs.
Subfigures (b), (c) and (d) are TCs calculated for each graphene concentration plotted in subfigure (a). [114] John Wiley & Sons. © 2019
WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
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often inside an overall junction are cyclically placed in uni-
form high- and low-temperature environments. This proce-
dure more closely approximates real-world TIM conditions
because of the fact that TIMs operate at a wide range of
temperatures. This procedure allows for multiple thermal
expansions and contractions to occur, which is an important
parameter in TIM pump-out and cracking. The results in the
literature for this procedure are inconsistent as well, with most
non-curing TIMs performing better [316, 319, 321]. It was
observed previously that most of these instances of
improvement were attributed to a reduction of the BLT and
increased wetting, with each mechanism not being a con-
tributing factor to cured TIMs [310].

Likely the most representative accelerated aging method
is power cycling. In this technique, a TIM often with its
accompanying junction are cyclically heated from a localized
source, resulting in a temperature gradient. This method
captures thermal expansion and contraction mechanisms
experienced in TIM applications the closest. Non-curing
TIMs typically exhibit a reduction in performance between
20%–60%, showing the superiority of this technique in
reproducing real-world behavior [310]. Because the sample is
being heated from one side, it is of greater importance that
one considers the rate of heating. If the heat were too high in
the localized spot where the heater is located, then it would
increase the effective thermal expansion mismatch in either
just the TIM or the entire TIM and junction sandwich.

Lewis et al worked on a power-cycled reliability study on
graphene-filled epoxy TIMs, without an adjoining junction
[322]. The decision to not examine the TIM inside a junction

sandwich stemmed from a desire to analyze the intrinsic TC
lifespan performance and to simplify the procedure for
reproducibility. A custom Nichrome wire heating loop
between Kapton was fabricated to be used as the localized
heating element. As part of a control system, a Type-J ther-
mocouple was fixed to the back of the sample as a feedback to
inform us how much electrical power we need to supply to the
heating coil. In the Python programming language, a cali-
bration algorithm determined the amount of power that was
needed to supply to the coil to achieve the desired temperature
range without any assumptions of material properties. It then
ran unattended with intermittent re-calibration events.
Figure 15 shows a schematic of the power cycle treatment
procedure. In addition, a small electronic fan was program-
matically controlled to speed the cooling phase of the power
cycle.

At specified power cycle counts, samples were removed
from the power cycling apparatus and experimented with
LFA to directly measure their thermal diffusivity.
Figures 16(a) and (b) show the thermal diffusivities and
conductivities for pure epoxy, while figures 16(c) and (d)
show that of 5.4 vol.%, and figures 16(e) and (f) show that of
30 vol.% samples. For all samples and at all power cycle
counts, the thermal diffusivity reduced with increasing
temperature. The initial RT diffusivities were 0.17, 1.25, and
4.6 mm2 s−1, in order of increasing load level. After each
sample’s cycling treatments, their RT thermal diffusivities
reached 0.17, 1.57, and 5.40 mm2 s−1, in the same order,
corresponding to a cycled percent enhancement of 0%,
25.6%, and 17.4%. Interestingly, a clear increase in thermal

Figure 14. Top rows are scanning acoustic microscope and bottom are IR thermography images taken a few milliseconds after device
powering on. (a) High-quality TIM application, (b) TIM application with substantial voids, and (c) TIM application with micro-cracks. (d),
(e) and (f) are IR thermography images corresponding to (a), (b) and (c), respectively. Quicker spread of temperature in (d) than (e) and (f),
evidenced by the wider red and green region, demonstrates a quicker heat spread than the other two samples. © 2006 IEEE. Reprinted, with
permission, from [259].

19

Nanotechnology 32 (2021) 142003 Topical Review



Figure 15. Schematic of the power cycling procedure. Power supply passes current through a custom wire coil heater and a thermocouple on
the back side of the sample and measures the corresponding equilibrium temperature for that power level. Insulators, thermocouple, sample
and heating coil were all fixed in position with light compression. (a) Image of the sample pre-treatment and (b) an image of an example
heating coil. Reproduced from [272]. CC BY 4.0.

Figure 16. Panels on the left show thermal diffusivity and panels on the right show TC. (a) Pure epoxy samples, (b) 5.4 vol.% samples and
(c) 30 vol.% samples. Reproduced from [272]. CC BY 4.0.
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diffusivity can be seen in loaded samples over the course of
cycling. Although the pure epoxy sample does show modest
improvement over the course of its cycling, it can only be
seen at elevated temperatures, whereas the loaded samples
show a more marked improvement at lower temperatures.

Using the classic definition of TC, K=αρCp, LFA
experiments for α, Archimedes’ principle experiments for ρ,
and Kopp–Neumann rule for Cp, the TCs of the composites
were determined. After power cycling, the 30 vol.% sample
achieved a TC of 9.3W/mK at RT, placing the sample
among the highest reported for graphene-enhanced TIMs at
this loading level [66, 102]. The pure epoxy sample did
experience TC enhancement only past 100 ◦C, with a modest
enhancement of 7.7% at that temperature, from 0.39 to
≈0.42W/mK. However, the 5.4 vol.% and 30 vol.% samples
each improved substantially over the course of cycling, con-
stituting an improvement of 24.9% and 17.3%, respectively.
The tendency for the TC of each composite to increase with
temperature is primarily dictated by the composite’s heat
capacity behavior as the temperature is varied.

In each sample and at all cycle counts, the TC at 125 °C
is lower than at 100 ◦C. This is attributed to the fact that the
glass transition temperature of this material is at around
100 °C and thermal properties are known to degrade in
polymers beyond this temperature [112, 323, 324]. It has been
reported previously that polymer glass transitions can be
elevated with volumetric substitution of inert materials, such
as graphene [325, 326]. The appearance of a reduction in
performance at 125 °C indicates that any elevation of glass
transition point must be less than 25 °C in total. An increase
of 30 °C was seen previously in a PMMA polymer matrix
with the inclusion of functionalized graphene. This suggests
that graphene does not greatly inhibit the epoxy’s cross-
linking.

No sample’s performance decreased over the entire
course of power cycling treatments. At low temperature, the
pure epoxy sample’s TC performance remained largely
unchanged. Interestingly, the samples loaded with graphene,
5.4 vol.% and 30 vol.%, showed a consistent increase in
performance over the course of treatment. Due to the elim-
ination of junction alterations as a factor to influence the TIM
performance, the obtained results effectively present the
intrinsic lifespan behavior of graphene TIMs, which should
be more reproducible due to the simplified experiment.
Should this study have been conducted in a junction it is very
possible that the performance over the course of treatment
would have decreased, as happened previously in a lifespan
study of silver-filled epoxies [327].

Khuu et al conducted accelerated lifespan research into a
pure epoxy TIM that showed modest thermal resistance
reductions of 8%, suggested to be caused by increasing the
level of epoxy cross-linking [317]. Lewis et alʼs study on pure
epoxy is mostly in agreement with the previous results with
only modest increases in TC—which would provide for a
reduction in observed thermal resistance—and negligible
difference at temperatures below 100 ◦C. When graphene is
added to the epoxy, however, a clear increase in TC at all
temperatures is observed over the course of power cycling,

amounting to an enhancement of 24.9% in 5.4 vol.% and
17.3% in 30 vol.%. Clearly from these results, graphene must
play an essential role in the intrinsic TIM performance over
the course of accelerated aging.

It was reasoned that the increased cross-linking mech-
anism for enhanced performance proposed earlier could
explain the large increase in graphene-epoxy TIMs but only
modest increase in pure epoxy TIMs. If the epoxy matrix is
increasing its level of cross-linking, then it is swelling and
simultaneously getting more and more rigid, leading to tighter
mechanical coupling between the graphene and epoxy matrix
[323]. This would lead to a lower Kapitza resistance between
the two materials. As polymers are elevated in temperature
the cross-linking rate can increase and once that reaction has
taken place, it is irreversible with respect to temperature. This
can explain why over the course of power cycling the per-
formance improves and why the improvement occurs even
when tested at RT.

7. Outlook

TIMs play an important and increasing role in the behavior of
high-power electronic circuits and VLSI chips. Device min-
iaturization and densification are driving the unceasing
demand for ever-improving TIM performance. Cost of pro-
duction, ease of application, safety around exposed circuit
elements, and lifespan reliability all contribute to the wide-
scale adoption of polymer-based TIMs in industry. In order to
improve the performance of polymer matrix TIMs, micro-
scopic fillers of very high TC are dispersed within them. Due
to graphene’s phenomenal intrinsic TC and its advantageous
quasi-2D geometry, there is substantial research into it as a
filler material. Graphene’s thermal coupling to the polymer
matrix in which it is dispersed as well as its dispersibility can
be further enhanced by functionalizing the graphene with
other materials. Tremendous potential for extraordinary TC
enhancement exists for the effective and facile alignment of
graphene fillers.

Increasing the load level of graphene in TIMs results in a
superlinear TC enhancement past a point known as the ther-
mal percolation threshold. The highest-performance graphene
TIMs are prepared at concentrations beyond this load level.
Special consideration will need to be given to these highly
loaded composites’ viscosity and workability. In this perco-
lative loading regime, graphene’s cross-plane TC plays a
large role as the weakest link in the overall heat flow.

Many TIM applications are very sensitive to its EC,
whether the TIM directly encapsulates or is at risk of spilling
onto active circuits due to junction pump-out as the device—
typically VLSI chip—alternates between high- and low-
power states. Because graphene has a high EC as well as TC,
special care with electrically sensitive applications must be
taken to either not surpass the electrical percolation threshold
or to use a clever hybrid filler strategy to disrupt otherwise
formed electrical networks within the composite.

TIMs by their nature must operate over a realistic life-
span. Any promising TIM developments require a full
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lifespan analysis before its industrial efficacy can be fully
assessed. Unfortunately, there is little consistency among
studies that are concerned with lifespan performance. It is
recommended by the authors that a more simplified approach
to TIM accelerated aging be taken, hopefully to achieve more
consistency and reproducibility in this research by reducing
the number of testing parameters.
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