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SCIENCE AND ENGINEERING
NANOFAB CLEANROOM

Outline of the Talk

—> Definition: Quasi-1D van der Waals materials
- Motivations

- Properties

- Current conduction of quasi-1D bundles

- Electromagnetic interference shielding of composites with quasi-1D
materials

—> Conclusions

Alexander A. Balandin, University of California - Riverside
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Terminology: Van der Waals Materials

(a)
Quasi-2D van der '{ "{ _« <:| Quasi-1D van der

Waals Materials ﬁ- K Waals Materials

—> Crystal structure of
monoclinic TaSe,,
with alternating layers
of TaSe,

—> Cross section of the
unit cell,
perpendicular to the
chain axis (b axis).

- The side view: 1D
nature of TaSe,

MoS, _ chains along the b
atomic threads axis. ’

Alexander A. Balandin, University of California - Riverside
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Concept of 1D and Quasi-1D
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Large Library of 1-D van der Waals Materials
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Reed Group, Stanford

There are
numerous 1D and
quasi-1D van der
Waals materials
with the wide
range of bandgaps
and effective
masses.

G. Cheon, et al.,
“Data Mining for New
Two- and One-
Dimensional Weakly
Bonded Solids” Nano
Letters 17, 1915
(2017).

NSF DMREF Stanford — UCR Project

Alexander A. Balandin, University of California - Riverside
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The Meaning of “Quasi” and "Quantum”

- “Quasi”’ in a sense of a bundle

- “Quasi” in a sense that you may have
weaker covalent bonds in
perpendicular plane

- ZrTeg is in between 2D and 1D
material

- “Quantum” in a sense of quantum
confinement: it can reveal itself
differently for van der Waals
materials

ey
. 3 L7

- “Quantum” is relation to the charge-
density-wave phases

At this point, we work with bundles, not individual chains

Alexander A. Balandin, University of California - Riverside
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Quasi-1D Channel TaSe, Devices Fabricated
by Electron Beam Lithography

Quasi-1D bundles and BN capping

Schematic of the TaSes/h-BN quasi-1D /

guasi-2D nanowire heterostructures used for The metals tested for fabrication of Ohmic
the |-V testing. contacts included combinations of thin layers of
Cr, Ti, Au, Pd together with a thicker Au layer.
Range: 20 nm to 100 nm 9

Alexander A. Balandin, University of California - Riverside
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Quasi-1D Channel ZrTe; Devices
Fabricated by Shadow Mask Method
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Alexander A. Balandin, University of California - Riverside

(a) SEM image of a shadow
mask. (b) SEM image of the
pattern for Ti and Au
evaporation to create the
contacts. (c) AFM image of
the quasi-1D ZrTe,
nanoribbon device. AFM
characterization was used to
determine the nanowire
width and thickness (33-nm
in the present case). (d)
SEM image of another
quasi-1D ZrTe3 nanowire
device with a different cross-
sectional area. The scale
bars in (a), (b) and (d) are 50
um, 2 um and 1 um
respectively.

10
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Electrical Characteristics of Devices with
Quasi-1D TaSe,; Channels — Ohmic Contacts

- Current-voltage
characteristics of
TaSe, devices with
different channel
length.

— Linear characteristics
at low voltage
indicates good
Ohmic contact of
TaSe; channel with
the metal electrodes.
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Current Density in Quasi-1D TaSe,
Nanowires — Bundles of Atomic Chains

‘_Quasi-‘l D TaSe3
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Alexander A. Balandin, University of California - Riverside

Resistivity is 2.6 — 6.4x10+ Q-cm.

—> High-field I-V
characteristics showing
the breakdown point. In
this specific device the
breakdown is gradual.

- Breakdown current
density of about 32
MA/cm2 — an order-of-
magnitude higher than
that for copper.

Open question: high
currents are sustained in
materials with low thermal
conductivity

12
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Current Carrying Capacity of Quasi-1D
ZrTe; van der Waals Nanoribbons
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1.5

The breakdown current
density, calculated with the
AFM measured thickness and
SEM measured width,
corresponds to ~108 A/cm?,
reached at the voltage bias of
~1.6 V.

The inset shows low-field |-V
characteristics of quasi-1D
Zr'Te; devices with different
channel lengths.

A. Geremew, et al., "Current
carrying capacity of quasi-1D ZrTe,
van der Waals nanoribbons," IEEE
Electron Device Lett., 39, 735
(2018). 13
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Comparison with Copper Interconnects —
Model Prediction
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100

Resistivity trend from the Fuchs-
Sondheimer model for the
electron—nanowire surface
scattering and the Mayadas-
Shatzkes model for the electron—
grain boundary scattering.

Electrical resistivity of Cu
nanowires normalized to the
bulk resistivity as a function of
W.

Specularity parameters p
defines electron scattering from
nanowire surfaces; reflectivity R
determines the electron
scattering from grain

boundaries. 14
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Testing Prototype Interconnects Implemented
with CVD Grown Quasi-1D Bundles of TaSe,

Bartels Group, UCR
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A.A. Balandin and L. Bartels, SRC — Intel Corporation: Task 2796.001
Fabrication and Testing of Quasi-1D van der Waals Metal Interconnects

T. A. Empante, et al., “Low resistivity and high breakdown current density of 10 nm diameter van

der Waals TaSe; nanowires by chemical vapor deposition,” Nano Letters 19, 4355 (2019).
15
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Breakdown in the Bundles of
Quasi-1D Materials
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- Step-by-step breakdown in the
bundles of the quasi-1D materials

—> Is self-healing function possible?

Alexander A. Balandin, University of California - Riverside

Unusual Breakdown Behavior
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Chemical Exfoliation of Bundles of
Quasi-1D van der Waals Materials

Polymer composite
films containing fillers

i comprised of quasi-1D
van der Waals
materials.

Fillers can exfoliation
into bundles of atomic
threads.

B These nanostructures
8 are characterized by

! extremely large aspect
=" ratios of up to ~106.

17
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Electromagnetic Interference (EMI)
Shielding — New Functionality

X-Band frequency range (8.2 GHz - 12.4 GHz)

= (b)

To determine EMI
characteristics,
we measured the
scattering
parameters, S;;,
using the two-port
PNA system.
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Extremely High Frequency (EHF) band (220 GHz — 320 GHz)

EMI shielding efficiency was determined from the measured scattering parameters using Agilent
N5245A vector network analyzer (VNA) with a pair of frequency extenders

Z. Barani, F. Kargar, K. Godziszewski, A. Rehman, Y. Yashchyshyn, S. Rumyantsev, G. Cywinski,
W. Knap, and A. A. Balandin, “Graphene epoxy-based composites as efficient electromagnetic
absorbers in the extremely high-frequency band,” ACS Appl. Mater. Interfaces, 12, 28635 (2020).

18
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EMI Characteristics — Definitions

The scattering parameters define the EM coefficients of reflection, R = |5,,|?, and
transmission, T = |S,4]?,

The coefficient of absorption, A, as A =1 — R — T. Afaction of the energy of EM wave,
incident on the film, is reflected at the interface.

The effective absorption coefficient, A.sf, is defined as A.rr = (1 —R—T)/(1 — R).

The total shielding efficiency, SE;, describes the total attenuation of the incident EM
wave by the material of interest.

The shielding parameters can be calculated in terms of R, T, and A,¢f as follows SEp =
— 10log(1 — R), SE, = —101log(1 — A¢sf), and SEr = SEg + SE,.

SSE =SE;/p SSE/t =SE/(p X t)

The figure-of-merit Zz= SE/(pxtxm) where my = Mg /(Mg + M)
Z =SE/(Mp/A), here A=V /tIisthe area

Alexander A. Balandin, University of California - Riverside

19
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Electromagnetic Interference (EMI)
Shielding — New Functionality

X-Band frequency range (8.2 GHz - 12.4 GHz)

Note that only 1.3 vol. % of quasi-1D fillers can provide ~15 dB shielding
efficiency, SE;, in the electrically insulating films (for reference, SE;=10 dB
corresponds to blocking 90% of electromagnetic energy).
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20
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